- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fourney, Adam (2)
-
Bennett, Paul N. (1)
-
Chang, Serina (1)
-
Friend, Ned (1)
-
Horvitz, Eric (1)
-
Juraszek, Marcin (1)
-
Koutra, Danai (1)
-
Safavi, Tara (1)
-
Sim, Robert (1)
-
Williams, Shane (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To design effective vaccine policies, policymakers need detailed data about who has been vaccinated, who is holding out, and why. However, existing data in the US are insufficient: reported vaccination rates are often delayed or not granular enough, and surveys of vaccine hesitancy are limited by high-level questions and self-report biases. Here we show how search engine logs and machine learning can help to fill these gaps, using anonymized Bing data from February to August 2021. First, we develop avaccine intent classifierthat accurately detects when a user is seeking the COVID-19 vaccine on Bing. Our classifier demonstrates strong agreement with CDC vaccination rates, while preceding CDC reporting by 1–2 weeks, and estimates more granular ZIP-level rates, revealing local heterogeneity in vaccine seeking. To study vaccine hesitancy, we use our classifier to identify two groups,vaccine early adoptersandvaccine holdouts. We find that holdouts, compared to early adopters matched on covariates, are 67% likelier to click on untrusted news sites, and are much more concerned about vaccine requirements, development, and vaccine myths. Even within holdouts, clusters emerge with different concerns and openness to the vaccine. Finally, we explore the temporal dynamics of vaccine concerns and vaccine seeking, and find that key indicators predict when individuals convert from holding out to seeking the vaccine.more » « less
-
Safavi, Tara; Fourney, Adam; Sim, Robert; Juraszek, Marcin; Williams, Shane; Friend, Ned; Koutra, Danai; Bennett, Paul N. (, The Thirteenth ACM International Conference on Web Search and Data Mining)
An official website of the United States government
